

DMP 331i / DMP333i LMP 331 i

Precision Pressure Transmitter / Screw-in transmitter

Stainless Steel Sensor

accuracy according to EN IEC 62828-2: 0.1 % span

Nominal pressure

from 0 ... 400 mbar up to 0 ... 600 bar

Output signal

2-wire: 4 ... 20 mA 3-wire: 0 ... 10 V (only for DMP 331i and LMP 331i) others on request

Product characteristics

- thermal error in compensated range -20 ... 80 °C: 0.2 % span TC 0.02 % span / 10K
- turn:down 10:1
- communication interface for adjusting of offset, span and damping

Optional versions

- **IS-versions** Ex ia = intrinsically safe for gases and dusts
- adjustment of nominal pressure gauges (factory-provided)

The precision pressure transmitter DMP 331i and DMP 333i as well as the precision screw-in level probe LMP 331i demonstrate the further development of our industrial pressure transmitters.

The signal of the sensor is processed by the intelligent digital electronics with 16-bit A/D converter which is able to do an active temperature compensation and linearization. Due to this we are able to offer the transmitters with excellent measurement parameters and exceptionally attractive price.

Preferred areas of use are DMP 331i / DMP 333i

Laboratory Techniques

Energy production (gas consumption and thermal energy measurement)

Preferred areas of use are LMP 331i

Environmental Engineering

(water / sewage / recycling)

BD SENSORS s.r.o. Hradišťská 817 CZ - 687 08 Buchlovice

Tel.: +420 572 411 011

www.bdsensors.cz info@bdsensors.cz

The company BD SENSORS s.r.o. is certified by Bureau Veritas Czech according to the standard ISO 9001.

DMP 331i / DMP 333i / LMP 331i

Precision Pressure Transmitter / Screw-in Transmitter

Technical Data

Pressure ranges DMP 331 i ¹								
Nominal pressure [t	bar]	0.4	1	2	4	10	20	40
gauge / absolute [b	oar]	0.4	1	2	4	10	20	40
Overpressure [b	oar]	2	5	10	20	40	80	105
Burst pressure [b	oar]	3	7,5	15	25	50	120	210
¹ On customer request we adjust the	dev	ice within the turn	n-down-possibil	ity by software	on the required p	ressure range.		
Vacuum ranges	orl	0.4 0.4		1 1	1 0	1	4	1 10
Overpressure	barj	-0.4 0.4	-	5	-1 Z	-1.	4	-110
Burst pressure [h	bar]	3		7.5	10	2	5	50
	Jaij	5		1.5	10	Z	0	50
Pressure ranges DMP 333 i ¹								
Nominal pressure [t	bar]			400	000			000
gauge / absolute [t	bar]	60		100	200	40	0	600
Overpressure [b	oar]	210		210	600	10	00	1000
Burst pressure [b	oar]	420		420	1000	12	50	1250
¹ On customer request we adjust the	dev	ice within the turn	n-down-possibil	ity by software	on the required p	ressure range.		
Pressure ranges LMP 331 i ¹								
	aarl	0.4	1	2	4	10	20	40
		4	10	20	40	100	200	400
Overpressure III	20j parl	2	5	10	20	40	80	105
Burst pressure [h	harl	3	7.5	15	25	80	120	210
¹ On customer request we adjust the	dev	ice within the turn	n-down-possibil	itv bv software	on the reauired p	ressure range.	120	210
				., .,		g_		
Output signal / Supply								
Standard		2-wire: 4	20 mA / \	√s = 12 36	VDC			
Option Exi, MINES – M1		2-wire: 4	20 mA / \	√ _s = 14 28	V _{DC}			
Options analog signal		2-wire: 4	20 mA with c	ommunicatio	n interface ²			
		3-wire*: 0	10 V / V	√s = 14 36	V _{DC}			
		0	10 V with co	mmunication	interface ²			
* only for DMP 331i and LMP 331i								
² only possible with el. connection Bi	nder	series 723 (7-pin	1)					
Performance								
A								
Accuracy ³		≤ ± 0.1 % spa	n					
Accuracy ³ performance after turn-down		≤ ± 0.1 % spai	n					
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1		$\leq \pm 0.1$ % span no change of a	n accuracy ⁴	wing formula	(for nominal pr		< 0.40 bar soo	2 noto 5);
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm 10.1 \pm 0.01$	n accuracy ⁴ use the follo 15 x turn-dow	wing formula	(for nominal pre	essure ranges	≤ 0.40 bar see	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01]$ with turn-dowr	n accuracy ⁴ use the follo 15 x turn-dow n = nominal c	wing formula 'n] % span pressure rang	(for nominal pre	essure ranges qe	≤ 0.40 bar see	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn	n accuracy ⁴ i use the follo 15 x turn-dow n = nominal p n-down of 10	wing formula n] % span pressure rang :1 following a	(for nominal pre e / adjusted ran ccuracy is calcu	essure ranges ge ılated:	≤ 0.40 bar see	e note 5):
Accuracy³ performance after turn-down - TD ≤ 5:1 - TD > 5:1		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp	wing formula n] % span pressure rang :1 following a pan i.e. accur	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25	essure ranges ge Jlated: % span	≤ 0.40 bar see	e note 5):
Accuracy³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turr $\leq \pm (0.1 + 0.01$ current 2-wire:	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _S	wing formula n] % span pressure rang :1 following a pan i.e. accur . – V _s min) / 0	(for nominal pre e / adjusted ran ccuracy is calcι acy is ≤ ± 0.25 .02 A] Ω volt	essure ranges ge Jlated: % span age 3-wire:_R	≤ 0.40 bar see min = 10 kΩ	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / 2	wing formula n] % span pressure rang :1 following a pan i.e. accur .– V _s min) / 0 10 V	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see min = 10 kΩ span / kΩ	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn)$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / -down) % spa	wing formula n] % span pressure rango 1 following a pan i.e. accur - V _s min) / 0 10 V an / year	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see c _{min} = 10 kΩ span / kΩ	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % spa 420 mA	wing formula n] % span pressure rang :1 following a pan i.e. accur :- V _s min) / 0 10 V an / year . (2-wire)	(for nominal pre e / adjusted ran ccuracy is calcι acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see c _{min} = 10 kΩ span / kΩ	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / -down) % spa 420 mA t 0 10 V	wing formula n] % span pressure rang :1 following a pan i.e. accur :- V _s min) / 0 10 V an / year . (2-wire)	(for nominal pre e / adjusted ran ccuracy is calct acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms 25 ms	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see amin = 10 kΩ span / kΩ	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration c = electronic de	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / -down) % spa 420 mA t 0 10 V of following p amping 0	wing formula n] % span pressure rang tan i.e. accur - V _s min) / 0 10 V an / year . (2-wire) arameters po	(for nominal pre curacy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms 25 ms ssible (interface	essure ranges ge Ilated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see comin = 10 kΩ span / kΩ cessary ⁵):	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration c - electronic da - offset: 09	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / -down) % spa 420 mA t 0 10 V of following p amping: 0 20 % span	wing formula n] % span ressure rang tan i.e. accur - V _s min) / 0 10 V an / year . (2-wire) arameters po 100 sec	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms 25 ms ssible (interface	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see comin = 10 kΩ span / kΩ cessary ⁵):	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times \text{turn-}$ current output voltage output configuration c - electronic da - offset: 0 9 - turn down of	n accuracy ⁴ use the follo 15 x turn-dow n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(Vs 05 % span / -down) % spa 420 mA t 0 10 V of following p amping: 0 20 % span f span: max.	wing formula n] % span ressure rangu :1 following a aan i.e. accur :- V _s min) / 0 10 V an / year . (2-wire) arameters po 100 sec 10:1	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms 25 ms 25 ms ssible (interface	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see g _{min} = 10 kΩ span / kΩ cessary ⁵):	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 6283		$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration c- electronic daoffset: 09- turn down of$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(V _s 05 % span / -down) % span 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line	wing formula n] % span ressure rangu i following a aan i.e. accur - V _s min) / 0 10 V an / year . (2-wire) arameters po 100 sec 10:1 arity, hysteresis	(for nominal pre e / adjusted ran ccuracy is calcu acy is ≤ ± 0.25 .02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability)	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see g _{min} = 10 kΩ span / kΩ cessary ⁵):	e note 5):
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges ≤	28-2-	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times \text{turn-}$ current output voltage output configuration c - electronic da - offset: 09 - turn down of - limit point adjust	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp : R _{max} = [(Vs 05 % span / -down) % spa 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc	wing formula n] % span ressure range an i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows:	essure ranges ge Jated: % span age 3-wire: R ad: 0.05 %	≤ 0.40 bar see min = 10 kΩ span / kΩ cessary ⁵):	e note 5):
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) \%$ spai ⁵ software, interface, and cable have	28-2- 0.40 n e.go	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration c - electronic da - offset: 0 9 - turn down of - limit point adjust D bar; for these ca - ordred senara	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % span 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$	wing formula m] % span ressure rangu- the following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll porporpriate for l	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e. accuracy is </i> \leq <i>Windows</i> [®] 95 98	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000 NT Versi	≤ 0.40 bar see $g_{min} = 10 kΩ$ span / kΩ cessary ⁵):	and XP)
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) \%$ spai ⁵ software, interface, and cable have Thermal effects (Offset and S)	28-2- 0.4(n e.g to b man)	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration c - electronic da - offset: 0 9 - turn down of - limit point adjust bar; for these ca turn-down of 3:1 e ordered separat	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % span 420 mA to 0 10 V of following p amping: 0 00 % span f span: max. trenet (non-line alculation of acc ts $t \in (0.1 + 0.0.)$	wing formula m] % span ressure rangu- t following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 02×3 % span appropriate for t	(for nominal pre- e / adjusted ran ccuracy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e. accuracy is</i> \leq <i>Windows</i> [®] 95, 98,	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see min = 10 kΩ span / kΩ cessary ⁵): on 4.0 or higher,	and XP)
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) % spat \leq software, interface, and cable haveThermal effects (Offset and S)Tolerance band [9/6 set$	28-2- 0.4(n e.g to b pan)	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times \text{turn-}$ current output voltage output configuration c - electronic da - offset: 0 9 - turn down of - limit point adjust D bar; for these ca bar; for these ca - supply: 0.1 - turn-down of 3.1 e ordered separate / Permissible $\leq \pm (0.2 \times \text{turn-})$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of action tis $\pm (0.1 + 0.0)$ tely (software a temperature i-down)	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 2 x 3) % span appropriate for N S	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e. accuracy is \leq</i> <i>Vindows</i> [®] 95, 98,	essure ranges ge ulated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher,	and XP)
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq \leq ± (0.1 + 0.02 x turn-down) % spat \leq software, interface, and cable have Thermal effects (Offset and S) Tolerance band [% sp	28-2- 0 .4(n e.gg t to b pan]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration c - electronic da - offset: 0 9 - turn down of - limit point adjust D bar; for these ca bar; for these ca - supply: 0.1 $\leq \pm (0.2 \times turn)$ in compensate	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of action tis $\pm (0.1 + 0.0)$ tely (software a temperature i-down) ed range	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 2 x 3) % span appropriate for N ps -20 80 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e. accuracy is \leq</i> <i>Vindows</i> [®] 95, 98,	essure ranges ge ulated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher,	and XP)
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) % spat \leq software, interface, and cable haveThermal effects (Offset and S)Tolerance band [% spat / 10$	28-2- 0 .4(n e.g pan) an]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down ofbar; for these cabar; for these cabar; for these cacurrend separatebar; for these caturn-down of 3:1e ordered separate\leq \pm (0.2 \times turn-in compensate\pm (0.02 \times turn-$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA t 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: s ± (0.1 + 0.0 tely (software a temperature i-down) ed range -down)	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for V as -20 80 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: i.e. accuracy is \leq Windows® 95, 98,	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher,	e note 5):
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) % spat \leq software, interface, and cable haveThermal effects (Offset and S)Tolerance band [% span / 10$	28-2- 0.4(n e.g to b pan) an]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down ofbar; for these cal-turn-down of 3:1e ordered separateI Permissible\leq \pm (0.2 \times turn-in compensate$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA 010 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature i-down) ed range -down) ed range	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for V sec -20 80 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: i.e. accuracy is \leq Windows® 95, 98, C	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher,	e note 5):
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) % spai 5 software, interface, and cable have Thermal effects (Offset and Sj Tolerance band [% span / 10 Permissible temperatures$	28-2- 0.4(n e.g pan) an]) K]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-$ current output voltage output configuration of - electronic da - offset: 0 9 - turn down of <i>imit point adjust</i> <i>bar; for these</i> ca <i>iturn-down of 3:1</i> e ordered separate <i>f</i> Permissible $\leq \pm (0.2 \times turn-in compensateStandard prod$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % span 420 mA 010 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature -down) ed range duct: medium	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for N as -20 80 ° -25 125 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: i.e. accuracy is \leq Windows® 95, 98, C C C / electronics /	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s	e note 5): and XP) storage: -40
Accuracy ³ performance after turn-down - TD \leq 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges \leq $\leq \pm (0.1 + 0.02 \times turn-down) % spai 5 software, interface, and cable have Thermal effects (Offset and Sj Tolerance band [% spa / 10 Permissible temperatures$	28-2- 0.4(n e.g pan) an]) K]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down oflimit point adjustbar; for these caiturn-down of 3:1e ordered separatef (0.02 x turn-in compensateStandard prod100 °C*$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % span 420 mA to 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ temperature -down) ed range duct: medium	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for N 25 80 ° -20 80 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: i.e. accuracy is \leq Windows [®] 95, 98, C C C / electronics /	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s	and XP)
Accuracy³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: 4 except nominal pressure ranges ≤ ≤ ± (0.1 + 0.02 x turn-down) % spai ⁵ software, interface, and cable have Thermal effects (Offset and S) Tolerance band [% span / 10] Permissible temperatures	28-2- 0.4(n e.g pan) an]) K]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down of- timit point adjustbar; for these ca- turn-down of 3:1e ordered separate/ Permissible\leq \pm (0.2 \times turn-in compensateStandard prod100 °C*$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA to 010 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature -down) ed range -down) ed range duct: medium : -20 60 °C	wing formula m] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for 1 25 80 ° -20 80 ° with patm 0,8	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: i.e. accuracy is \leq Windows® 95, 98, C C C / electronics / bar up to 1,1 ba	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versio 2000, NT Versio c environment: ar in zone	≤ 0.40 bar see $g_{min} = 10 k\Omega$ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s 1 or higher: -20	and XP)
Accuracy ³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: ⁴ except nominal pressure ranges ≤ ≤ ± (0.1 + 0.02 x turn-down) % spat ⁵ software, interface, and cable have Thermal effects (Offset and Sj Tolerance band [% spather for spat	28-2- 0.4(n e.g to b pan) an]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down of- limit point adjustb bar; for these ca- turn-down of 3:1e ordered separate\pm (0.02 \times turn-in compensate\pm (0.02 \times turn-in compensateStandard prod100 °C*Exi: in zone 0:Ex (MINES - M$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA to 010 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature i-down) ed range -down) ed range duct: medium : -20 60 °C M1): Medium:	wing formula n] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll 22 x 3) % span appropriate for 1 25 -20 80 ° -20 80 ° -20 80 ° -20 80 ° -20 80 °	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e.</i> accuracy is \leq Windows [®] 95, 98, C C C / electronics / bar up to 1,1 ba transmitter: -20	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid 2000, NT Versid c environment: ar in zone 065 °C / stoo	≤ 0.40 bar see min = 10 kΩ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s 1 or higher: -21 rage: -2570	e note 5): and XP) storage: -40 0 65 °C °C
Accuracy³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: 4 except nominal pressure ranges ≤ ≤ ± (0.1 + 0.02 x turn-down) % spai ⁵ software, interface, and cable have Thermal effects (Offset and S) Tolerance band [% span / 10] Permissible temperatures Electrical protection Shot airwit protection	28-2- 0.4(n e.g to b pan) an]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down of- limit point adjustbar; for these ca- turn-down of 3:1e ordered separate\pm (0.02 \times turn-in compensateStandard prod100 °C*Exi: in zone 0:Ex (MINES - M$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $\mathbb{R}_{max} = [(V_s)$ 05 % span / -down) % span 420 mA to 0 10 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature i-down) ed range -down) ed range duct: medium : -20 60 °C M1): Medium:	wing formula n] % span pressure range (1 following a ban i.e. accur - V _s min) / 0 10 V an / year (2-wire) arameters po 100 sec 10:1 arity, hysteresis curacy is as foll (2 x 3) % span appropriate for 1 25 -20 80 ° (-25 125 ° (-25 125 °) with patm 0,8 (-20 70 °C /	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e.</i> accuracy is \leq Windows [®] 95, 98, C C C / electronics / bar up to 1,1 bar	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versic 2000, NT Versic content: ar in zone 065 °C / store	≤ 0.40 bar see min = 10 kΩ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s 1 or higher: -20 rage: -2570 '	e note 5): and XP) storage: -40 0 65 °C °C
Accuracy³ performance after turn-down - TD ≤ 5:1 - TD > 5:1 Permissible load Influence effects Long term stability Response time Adjustability ³ accuracy according to EN IEC 628: 4 except nominal pressure ranges ≤ ≤ ± (0.1 + 0.02 x turn-down) % spai ⁵ software, interface, and cable have Thermal effects (Offset and S) Tolerance band [% spa / 10] Permissible temperatures Electrical protection Short-circuit protection	28-2- 0.4(n e.g to b pan) an]	$\leq \pm 0.1$ % span no change of a for calculation $\leq \pm [0.1 + 0.01$ with turn-dowr e.g. with a turn $\leq \pm (0.1 + 0.01$ current 2-wire: supply: 0.0 $\leq \pm (0.1 \times turn-current outputvoltage outputconfiguration of- electronic da- offset: 0 9- turn down of- limit point adjustD bar; for these ca- turn-down of 3:1e ordered separate\pm (0.02 \times turn-in compensate\pm (0.02 \times turn-in compensateStandard prod100 °C*Exi: in zone 0:Ex (MINES - M$	n accuracy ⁴ use the follo 15 x turn-down n = nominal p n-down of 10 15 x 10) % sp $R_{max} = [(V_s)$ 05 % span / -down) % span 420 mA 010 V of following p amping: 0 00 % span f span: max. tment (non-line alculation of acc 1: $\leq \pm (0.1 + 0.0)$ tely (software a temperature i-down) ed range -down) ed range duct: medium : -20 60 °C M1): Medium	wing formula n] % span pressure range 1 following a pan i.e. accur $-V_s min) / 0$ 10 V an / year (2-wire) arameters po 100 sec 10:1 ararity, hysteresis curacy is as foll 22 x 3) % span appropriate for 1 25 -20 80 ° -20 80 ° -20 80 ° with patm 0,8 -20 70 °C /	(for nominal pre- e / adjusted ran ccuracy is calcu acy is $\leq \pm 0.25$.02 A] Ω volt loa 5ms 25 ms ssible (interface s, repeatability) ows: <i>i.e.</i> accuracy is \leq Windows [®] 95, 98, C C C / electronics / bar up to 1,1 bar	essure ranges ge Jlated: % span age 3-wire: R ad: 0.05 % e / software ne ± 0.16 % span 2000, NT Versid 2000, NT Versid c environment: ar in zone 065 °C / stor	≤ 0.40 bar see min = 10 kΩ span / kΩ cessary ⁵): on 4.0 or higher, -25 85 °C / s 1 or higher: -20 rage: -2570 °	e note 5): and XP) storage: -40 0 65 °C °C

Technical Data

Electromagnetic compatibility	emiss	ion and immu	nity according	to EN 61326									
Materials													
Pressure port	stainle	ess steel 1.440)4 (316 L)										
Housing	stainle	stainless steel 1 4404 (316 L)											
Option field housing	stainle	200 Steel 1 430)1 (304): cabl	e aland M16v1	15 brass nicke	I plated (cla	amning rang	ne 2 8 mm)					
Casta		staniess steer 1.450 r (504), cable giand wirox 1.5, brass, nickel plated (clamping range 2 8 mm)											
Seals	DIVIP	DMP 3311/ LMP 3311: FKM											
	DMP	DIMP 333I: NBR											
	option	ial:	welded v	ersion °									
	others	s on request											
Diaphragm	Diaphragm stainless steel 1.4435 (316L)												
Media wetted parts	press	ure port, seals	, diaphragm										
⁶ welded version only with pressu	re ports accordi	na to EN 837: w	elded version no	ot available with	pressure ranges ≤	0.16 bar an	d > 40 bar						
Mochanical stability													
	40.5												
Vibration	10 g F	RMS (20 20)	JU HZ) accol	rding to DIN E	N 60068-2-6								
Shock	100 g	/ 11 msec	accor	rding to DIN E	N 60068-2-27								
Explosion protection (only	for 4 20 m/	4 / 2-wire)											
Approvals DX9-DMP 331	IBEVI	, 110ATEX1122	Y										
	Zone												
DX9-LIVIP 3311	Zone			, Da									
Approvals IBExU13ATEX104	3X IM1E	±x ia I Ma (MIN	IES - M1)										
	U _i = 2	8 V, I _i = 93 mA	$P_i = 660 \text{ mW}$	V, C _i ≈ 0 nF, L _i	≈0 μH,								
Safety technical max. values	the su	pply connection	ons have an in	ner capacity o	of max. 27 nF to	the housin	a						
Connecting cohice	achia	oonooitonooi	aignal ling/ahi		line/signal line:	160 pE/m	5						
	cable	capacitance:	signal line/shi	eid also signai	line/signal line:	160 pF/m							
(by factory)	cable	inductance:sig	nal line/shield	i also signal lir	ne/signal line: 1µ	ιH/m							
Miscellaneous													
Current consumption	signal	output current	: max. 25	mA									
	signal	output voltage	max 7 n	nA									
Weight	annroy	< 200 a											
	appio/	. 200 g											
	any												
Operational life	100 m	illion load cycl	es										
CE-conformity	EMC I	Directive: 2014	/30/EU	Pressi	ure Equipment D	irective: 20	014/68/EU (module A) ⁸					
ATEX Directive	2014/	34/EU											
⁷ Pressure transmitters are calibr	ated in a vertical	nosition with th	e nressure conn	ection down. If t	his position is char	naed on inst	allation there	can he slight					
deviations in the zero point for p	ressure ranges	$P_N \leq 1 \text{ bar.}$.gea en men		oun so ongin					
⁸ This directive is only valid for de	vices with maxii	num permissible	e overpressure >	> 200 bar									
Wiring diagrams													
thing diagrams													
2-wire-system (current)			3-wire-system	n (voltage)									
	200 .		/ suppl	y +	o +								
			P /	()									
			Vs										
	Vs												
I L Y	0	\sim signal + \checkmark											
				-									
Pin configuration													
						Bayone	et MIL-C-						
						26482	2(10-6)						
	150 4400	D : 1 D 00	Binder	M12v1/		20402	- (10=0) - B						
	130 4400	Binder 723	723//23	IVI I ZX I/	field housing								
		(5-pin)	(7 nin)	metal (4 min)	neid neusing		and les	cable co					
	1	2 1	(7-pin) 3	(4-pin)		D	A						
Electrical connections		(\bigcirc)		3 2	0000								
	3	3	2 6 5		6666								
						E	F	47100)					
					Vs+ Vs- S+ GND								
	2	4 5	7 0	4 1		2-wire	2-wire						
						2-00110	2-00110						
supply +	1	3	3	1	Vs +	A	A	wh (white)					
supply –	2	4	1	D	bn (brown)								
signal + (only for 3-wire)	3	1	6	3	S +	-	В	gn (areen)					
								gn/ye					
shield	around pin	5	2	4	GND	pressi	ure port	(green/vel-					
	J		-	· ·									
Communica-			4					1011/					
tion interface ⁹	-	-	4	-	-	-	-	-					
	-	-	5	-	-	-	-	-					
GND	-	-	7	-	-	-	-	-					

DMPi-LMPi EN 27.06.2024

Programming kits for i-devices	Programming kits for i-devices: CIS 510-RS232 and CIS 510-USB									
CIS 510-RS232	CIS 510-USB									
Supply V _S	for CIS 510-RS232: 24V _{DC} for CIS 510-USB: 24V _{DC}									
Package contents	Programming software "Config 3.0" on CD operating manual CIS 510-RS232: Adapt 1 RS-232 connecting cable (for PC) 7-pin connecting cable (for measuring device) CIS 510-USB: Adapt 5 USB connecting cable (for PC) 7-pin connecting cable (for PC)									
System requirement	For the installation of the software, a Windows® PC (95, 98, ME, 2000, NT, XP) with serial interface (RS 232) or USB-interface is required									
Please read the operating manu	ual carefully before installing and starting up the programming kit.									
Wiring diagrams										
CIS 510-RS232:	CIS 510-USB interface:									
CIS 510-RS232: Cable with socket 7-pin Cable										
	P 7-pin connecting cable									
Ordering codes	P 7-pin connecting cable									
Ordering codes Version:	Provide the set of the									
Ordering codes Version: Adapt 1 with RS232 connecting Adapt 5 with USB connecting	Princonnecting cable Ordering code: ng cable for PC CIS 510-RS232 cable for PC CIS 510-USB									

Ordering code DMP 3	31i		
23.08.2024			
DMP 331i			
D			
Gauge (0,440 bar)	1 1 0		
Absolute (0,440 bar)	1 1 1		
Input [bar]			
00,4	4 0 0 0		
0.2			
04	4 0 0 1		
0 10	1 0 0 2		
020	2 0 0 2		
040	4002		
-0,4 0,4 -1 1	S 1 0 2		
-12	V 2 0 2		
-1 4	V 4 0 2		
-1 10	V 1 0 3		
Customer	9 9 9 9 X X X X		
Output			
420 mA / 2-wire	1		
010 V / 3-wire	3		
Intrinsic safety Ex ia 420 mA / 2-wire	E		
Customer	9		
Accuracy	-		
0,1 % - standard range		1	
0,1 % - standard range including Calibration Certificate		P	
0,1 % - customer range		H	
0.2 % (P _N < 0.1 bar)		В	
$0.2 \% (P_N < 0.1 \text{ bar})$ with Calibration Certificate		Q	
Customer		9	
Electrical connection			
Connector DIN 43650 (ISO 4400) (IP 65) Connector Binder 723 5-nin (IP 67)			
Cable gland PG7 / cable length specify (IP 67)		4 0 0	
+ PVC cable / 1 m			
Connector Buccaneer (IP 68)		5 0 0	
Field housing stainless steel, cable gland M 16 x 1,5 (IP 67)		8 0 0	
Connector Binder 723 and 423 7-pin (IP 67) (for Interface RS 232)		8 8 0 A 0 0	
Connector DIN 43650 (ISO 4400) - potting compound inside (IP 67)		E 0 0	
Connector M12 x 1, 4-pin (IP 67)		M 0 0	
Connector M12 x 1, 4-pin (IP 67) - metal		M 1 0	
Cable outlet, cable with ventilation tube (IP 68) '		IRU	
Customer		999	
Mechanical connection			
G 1/2" DIN 3852			1 0 0
G 1/2" EN 837 G 1/4" DIN 3852			2 0 0
G 1/4" EN 837			4 0 0
M 20 x 1,5 DIN 3852			500
M 12 x 1 DIN 3852			6 0 0
M 10 x 1 DIN 3852			
IVI 2U X 1,3 EIN 637			5 U U F U U
M 20 x 1,5 DIN 3852 with flush sensor diaphragm			F 0 4
1/2" NPT			N 0 0
1/4" NPT			N 4 0
Soals			alalal
Viton (FKM)			1

2 3

Without seals - welded (only with EN 837-1/-3) 2,3	
EPDM	

Viton (FKM) up to -40 °C	F			
Customer	9			
Special version				
Standard		1 1	1	
Temperature compesation -30 80 °C (only with seals "F" or welded "2")		1 1	2	
Interface RS 232 (only for connector Binder 723/423 7-pin) ⁴		1 2	1	
Customer	(9 9	9	
Software for set up on site				
Communication module ADAPT-6 (RS 232 / USB for DMP 331i, DMP 333i) + software				
Software for DMP 331i, 333i / update code 503498				
Accessories				

Adapt 1 with RS232 connecting cable for PC (CIS 510-RS232) Adapt 5 with USB connecting cable for PC (CIS 510-USB)

0,-...without additional charge

On request...in accordance with the producer

Surcharges for calibration are not subject to any discounts. Subject to change.

This document contains the specification for ordering the product; detailed technical parameters of the product and its possible variants are given in the data sheet. BD SENSORS reserves the right to change sensor specifications without further notice.

1 code TR0 = PVC cable, cable with ventilation tube available in different types and lengths; cable not included in the price

2 only possible for DMP 331i and $P_N \le 40$ bar

3 welded version only with pressure ports according to EN 837

4 Communication interface RS232 only possible with el. connection Binder serie 723/423 (7pin)

Software, Interface and cable for DMP 331i with option RS-232 have to be order separately

(Ordering code: CIS-G; Software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or newer and XP)

Windows® is a registrated trademark of Microsoft Corporation

Ordering code DMP	333i										
23.08.2024 DMP 333i			1.0	Т	ו.ר		Π.	-	-	Т	1
					-1-1		H				
Pressure					42						
Gauge '	1 3 0				-						
ADSOIUTE	1 3 1										
	6002				-						
0 100 ²	1003										
0 200 ²	2 0 0 3				Т						
0400 ²	4003										
0 600 ²	6003				Т						
Customer	9999										
Output											
420 mA / 2-wire		1			_						
Intrinsic safety Ex ia 420 mA /2-wire		E									
Intrinsic safety M1 Ex ia 4 20 mA / 2-wire (for mines)		F									
Customer		9			i.						
0.1%- standard range		1		1							
0.1 % - standard range		F			Т						
0.1 % - customer range											
0,1 % - customer range including Calibration Certificate		H			T						
0,2 % (P _N < 0,1 bar)		E									
Customer		g			Т						
Electrical connection											
Connector DIN 43650 (ISO 4400) (IP 65)			1	0 0	S						
Connector Binder 723 5-pin (IP 67)			2	0 0	J			_			
Cable gland PG7 / cable length specify (IP 67)			4	0 0	ו						
+ PVC cable / 1 m			-	0	_						
Eield housing stainless steel, cable gland M 16 x 1.5 (IP 67)			5)						
Field housing stainless steel, cable gland M 20 x 1,5 (IP 67)			8	8 0	0						
Connector Binder 723 and 423 7-pin (IP 67) (for Interface RS 232)			A	0 0	0						
Connector DIN 43650 (ISO 4400) - potting compound inside (IP 67)			E	0 0	0						
Connector M12 x 1, 4-pin (IP 67)			М	0 0	0						
Connector M12 x 1, 4-pin (IP 67) - metal			М	1 (D						
Cable outlet, cable with ventilation tube (IP 68) ³			Т	R	J						
+ PVC cable / 1 m											
Customer			9	9 9	3	_		_			
Mechanical connection						1 0					
G 1/2" DIN 3852						10	0				
G 1/2 EN 037 G 1/4" DIN 3852						20	0				
G 1/4" EN 837						4 0	0				
M 20 x 1.5 DIN 3852						5 0	0				
M 12 x 1 DIN 3852						6 0	0				
M 10 x 1 DIN 3852						7 0	0				
M 20 x 1,5 EN 837						8 0	0				
G1/2" DIN 3852 open pressure port						H 0	0				
1/2" NPT						N 0	0	_			
1/4" NPT						N 4	0				
Customer						99	9				
Viton (FKM)								1			
EPDM ($P_{\rm M} < 160 \text{ bar}$)								3			
NBR (standard)								5			
Customer								9			
Special version											
Standard									1	1 1	
Interface RS 232 (only for connector Binder 723/423 7-pin) ⁴									1	2 1	
Customer									9	99	
Software for the intelligent pressure transmitters											
Communication module ADAP I-6 (RS 232 / USB for DMP 331i, DMP 333i) + software											
Accessones											

Adapt 5 with USB connecting cable for PC (CIS 510-USB)

0,-...without additional charge

On request...in accordance with the producer

Surcharges for calibration are not subject to any discounts. Subject to change.

This document contains the specification for ordering the product; detailed technical parameters of the product and its possible variants are given in the data sheet. BD SENSORS reserves the right to change sensor specifications without further notice.

1 measurement starts with ambient pressure

2 pressure ranges > 60 bar as DMP 333i 3 code TR0 = PVC cable, cable with ventilation tube available in different types and lengths; cable not included in the price

4 Communication interface RS232 only possible with el. connection Binder serie 723/423 (7pin)

Software, Interface and cable for DMP 333i with option RS-232 have to be order separately

(Ordering code: CIS-G; Software appropriate for Windows® 95, 98, 2000, NT Version 4.0 or newer and XP)

			Ordering	code L	.MP	331												
23.08.2024	4											-						
		LMP 331i		·······································	-Щ		-L	-	-	-	-		- L		-L	-		
Prossura																		
in har				430							_							
in m H₂O				1 3 1														
Input	[mH_O]	[bar]		4011														
mpar	0 4			_	10													
	0 4	0 1			1 0													
	0 20	0 2			2 0													
	0 40	0 4			4 0													
	0 100	0 10			1 0													
	0 200	0 20			2 0													
	0 400	0 40			4 0	0 2												
Customer	0 400	0			9 0													
Housing mater	rial					51515												
Stainless steel	1 4404 (316 L)				_	_	1											
Diaphragm ma	terial						·											
Stainless steel	1.4435 (316 L)				_		_	1										
Output																		
4 20 mA / 2-v	wire				_		_	_	1									
0 10 V / 3-wi	re ³								3						-			
Intrinsic safety E	 Ex ia 4 20 m	A / 2-wire							E									
Intrinsic safety	V1 Ex ia 4 … 2	0 mA / 2-wire (for mines)							F									
Customer		,							9									
Accuracy																		
0,1 % - standard	d range									1								
0,1 % - standard	d range includi	ng Calibration Certificate								Р								
0,1 % - custome	er range	0								1								
0,1 % - custome	er range includ	ing Calibration Certificate								н								
0,2 % (P _N < 0,1	bar)	с С								В								
Customer										9								
Electrical conn	nection									1								
Connector DIN	43650 (ISO 44	00) (IP 65)									1	0 0)					
Connector ISO	4400 (IP 65) +	silicone seals for Ex nA									1	0 !	5					
Connector Bind	er Serie 723 5	-pin (IP 67)									2	0 0						
Cable gland PG	67 / cable lengt	h specify (IP 67)									4	0 0	D					
+ PVC cable / 1	m																	
Connector Bucc	caneer (IP 68)										5	0 0	D					
Field housing st	tainless steel, o	cable gland M 16 x 1,5 (IP 67)									8	0 0)					
Field housing st	tainless steel, o	cable gland M 20 x 1,5 (IP 67)									8	8 (D					
Connector DIN	43650 (ISO 44	00) - potting compound inside	(IP 67)								Е	0 0)					
Connector Bind	er 723 and 423	3 7-pin (IP 67) (for Interface RS	232)								Α	0 (D					
Connector M12	x 1, 4-pin (IP 6	67)									М	0	D					
Connector M12	x 1, 4-pin (IP 6	67) - metal									М	1 ()					
Cable outlet, ca	ble with ventila	ation tube (IP 68) ¹	1								Т	R	D					
+ PVC cable / 1	m																	
Customer											9	9 9	9					
Mechanical co	nnection																	
G 3/4" DIN 3852	2												ł	00)			
Customer													ę	99)			
Seals																		
Viton (FKM)															1			
EPDM															3			
Customer															9			
Special version	n																	
Standard			0													1	1 1	
Interface RS 23	2 (only for con	nector Binder Serie 723/423 7-	pin) ²													1	2 1	
Customer																9	9 9	
Accessories																		
Adapt 1 with RS	S232 connectin	g cable for PC (CIS 510-RS2	32)															

Adapt 5 with USB connecting cable for PC $\,$ (CIS 510-USB) $\,$

0,-...without additional charge

On request...in accordance with the producer

Surcharges for calibration are not subject to any discounts. Subject to change.

This document contains the specification for ordering the product; detailed technical parameters of the product and its possible variants are given in

1 code TR0 = PVC cable, cable with ventilation tube available in different types and lengths; cable not included in the price 2 not in combination with SIL

3 maximum length of PVC cable - 25 m, PUR, FEP, TPE - 40 m

